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ABSTRACT

The extent of smoothing applied to cortical thickness maps critically influences sensitivity, anatomical
precision and resolution of statistical change detection. Theoretically, it could be optimized by increasing the
trade-off between vertex-wise sensitivity and specificity across several levels of smoothing. But to date
neither parametric nor nonparametric methods are able to control the error at the vertex level if the null
hypothesis is rejected after smoothing of cortical thickness maps. To overcome these drawbacks, we applied
sequential statistical thresholding based on a simple hierarchical model. This methodology aims at
controlling erroneous detections; firstly at the level of clusters, over smoothed statistical maps; and secondly
at the vertex level, over unsmoothed statistical maps, by applying an adaptive false discovery rate (FDR)
procedure to clusters previously detected. The superior performance of the proposed methodology over
other conventional procedures was demonstrated in simulation studies. As expected, only the hierarchical
method yielded a predictable false discovery proportion near the predefined FDR g-value for any smoothing
level at the same time as being as sensitive as the others at the optimal setting. It was therefore the only
method able to approximate the optimal size of spatial smoothing when the true change was assumed
unknown. The hierarchical method was further validated in a cross-sectional study comparing moderate
Alzheimer's disease (AD) patients with healthy elderly subjects. Results suggest that the extent of cortical
thinning reported in previous AD studies might be artificially inflated by the choice of inadequate smoothing.
In these cases, interpretation should be based on the location of local maxima of suprathreshold regions

rather than on the spatial extent of the detected signal in the statistical parametric map.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Thickness is a descriptor of the mammalian neocortex that provides
relevant information on the integrity of cortical columns and morpho-
logical correlates of higher cognitive functions (Von Economo, 1929;
Jones and Peters, 1984). Computational neuroanatomy techniques are
contributing substantially to in vivo measurements of human cortical
thickness facilitating a topographical and quantitative description of
atrophy patterns associated with prevalent neurological (Butman and
Floeter, 2007; Charil et al., 2007; Biega et al., 2006; Singh et al., 2006;
Lerch et al,, 2005; Thompson et al,, 2001) and psychiatric disorders
(Makris et al., 2007; Shaw et al., 2006; Lyoo et al., 2006; Kuperberg et al.,
2003). In addition, these techniques have been successfully applied to
detect cortical descriptors that differentiate healthy aging (Sowell et al.,
2003) from incipient neurodegenerative processes (Apostolova and
Thompson, 2008). Thus, a different rate and topographical pattern of
cortical thinning have been described in AD patients when compared
with healthy elderly subjects, which seems relevant for the diagnosis
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and early detection of this prevalent neurodegenerative disease
(Dickerson et al., 2009; Singh et al., 2006; Lerch et al., 2005; Thompson
et al., 2003).

Cortical thickness maps are obtained by computational techniques
either involving surfaces or voxels, or even a mixture of both. Our study
is focused on surface-based methods that provide measures of the
distance between surface-based models of the gray matter/white
matter and the gray matter/CSF boundaries (Lerch and Evans, 2005;
Fischland Dale, 2000). Although the spatial resolution of these measures
has drastically increased in the last few years, spatial blurring required
by statistical testing results in decreased anatomical precision of cortical
thinning estimations (Han et al., 2006; Lerch and Evans, 2005).
Smoothing is typically performed by linearly filtering the cortical
thickness maps with surface-based Gaussian kernel approximations
after the maps are resampled to an average surface. These filters
therefore act as low-pass spatial frequency filters along the average
cortical manifold (Hagler et al., 2006; Chung et al., 2005). As a general
rule, the larger the extent of smoothing the lower the spatial resolution
of thickness measurements and accuracy at identifying cortical thinning.
Note however that an appropriate level of smoothing can significantly
increase the sensitivity of subsequent statistical analyses by increasing
the signal-to-noise ratio in the statistical map.
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Cortical surfaces are typically mapped onto the sphere to establish an
intrinsic 2D spherical coordinate system. To take advantage of this
natural surface parameterization, previous studies have approximated
the Gaussian kernel filtering with heat kernel smoothing over the
sphere (Chung et al, 2007). We further found that non-linear spherical
wavelet-based denoising schemes improve the trade-off between
anatomical precision and thinning detection achieved with surface-
based approximations to Gaussian kernel smoothings (Bernal-Rusiel
et al,, 2008). The lower smoothing introduced by wavelet-based spatial
filters together with their adaptive properties likely account for their
better performance when compared with the Gaussian smoothing
operators. In the present study, we smooth individual cortical thickness
maps over the spherical average surface by using both the previously
developed spherical wavelet-based denoising and the approximation to
Gaussian kernel smoothing given by the iterative nearest neighbor
averaging algorithm (Hagler et al., 2006; Han et al.,, 2006).

According to the matched filter theory (Pratt, 1991), the optimal
extent of spatial smoothing can be determined by enhancing the
matching with the putative area of change. However, it seems difficult to
optimize this criterion in exploratory studies. Results from real (Han
et al. 2006; Singh et al., 2006) and simulation studies (Bernal-Rusiel et
al., 2008; Lerch and Evans, 2005) suggest that increasing smoothness of
thickness maps not only enhances sensitivity but also reduces specificity
and image resolution. Here sensitivity is defined as the probability of
correctly identifying a vertex showing true thinning, while specificity is
the probability of correctly rejecting a vertex that did not change. It
seems, therefore, that improving the trade-off between sensitivity and
specificity over the range of detection might be a preliminary approach
to determine the optimal smoothing to apply in cortical thickness
analysis. But computation of sensitivity and specificity requires knowing
the number of true positive and true negative vertices detected
respectively, which can only be determined in simulation studies.
Alternatively, estimation of this trade-off could be based on estimation
of the proportion of false positives among all the detected vertices and
the number of true null hypotheses. Unfortunately, neither parametric
random field methods (Worsley et al., 1996; Friston et al., 1994) nor
nonparametric permutation-based tests (Hayasaka and Nichols, 2003)
are able to control the error at the vertex level if the omnibus null
hypothesis is false and cortical thickness maps were previously
smoothed. The same constraint is applicable to vertex-wise FDR
procedures. In fact, the smoothing typically extends the signal present
in one particular vertex to many null vertices resulting in artificial
inflation of the proportion of detected vertices that contain true signal
(Chumbley and Friston, 2009).

Here we propose a simple hierarchical model to overcome this
drawback when applying either linear (e.g., Gaussian kernel approx-
imation) or non-linear (e.g., wavelet-based) smoothing to cortical
thickness maps. More specifically, our approach, firstly, controls for
false positives at the level of clusters, via either random field theory or
permutation-based inference, and then at the level of vertices (within
each significant cluster detected in the previous step) by applying an
adaptive FDR procedure. We confirmed the superior performance of
the proposed methodology (for both Gaussian and spherical wavelet
smoothing) over other statistical thresholding approaches by means
of simulation studies. We further validated the method in a cross-
sectional study comparing moderate AD patients with healthy elderly
subjects.

Material and methods
Subjects

The simulation study was performed on 66 healthy elderly
subjects (age: 59-94 yr, 50 women) selected from the OASIS database.

Inclusion criteria consisted of Mini-Mental State Examination
(MMSE) with scorings >29 (high level of functioning), and Clinical

Dementia Ratings (CDR) of 0 (no dementia). They were randomly
assigned into the control (no changes in cortical thickness were
introduced) or experimental group (included hybrid changes in
cortical thickness). Gender (25 females and 8 males in each group) and
age were balanced between the two groups (control: 74.7 +8.9 yr;
experimental: 74.7 £ 8.9 yr).

The proposed hierarchical methodology was further validated
with two different smoothing methods (Gaussian and spherical
wavelets), and its performance compared with five traditional
statistical approaches (FDR and vertex- and cluster-based inference
procedures by using either random field or permutation testing) in 53
mild-to-moderate AD patients (74.9 + 9 yr, 37 females) selected from
the OASIS database, and a subset of 53 well-matched healthy elderly
subjects (7547 yr, 37 females) used in the simulation study.

MRI data acquisition

Four high resolution structural T1-weighted magnetization-pre-
pared rapid gradient echo (MP-RAGE) images were acquired in each
subject during the same session on a 1.5-T Vision™ scanner (Siemens,
Erlangen, Germany). MP-RAGE parameters were empirically optimized
for gray/white contrast (repetition time=29.7 ms, echo time =4 ms,
flip angle=10° inversion time=20ms, delay time=200 ms,
256 %256 (1x1 mm) in-plane resolution, 128 sagittal 1.25 mm slices
without gaps, time per acquisition = 6.6 min).

Cortical surface reconstruction and cortical thickness estimation

Volumetric segmentation and cortical surface reconstruction were
performed automatically by using the Freesurfer toolkit (http://
surfer.nmr.mgh.harvard.edu/). The analysis procedure was described
in detail in prior studies (Fischl and Dale, 2000; Dale et al., 1999; Fischl
et al,, 1999a). Briefly, the processing steps for each subject included
motion correction and averaging of the MP-RAGE volumes to generate
a single volume with improved signal-to-noise ratio. Next, Talairach
transformation and non-uniformity correction algorithms were
applied before skull stripping through a hybrid watershed/surface
deformation procedure (Segonne et al., 2004). After that, white
matter was segmented and its boundary was tessellated to generate
the gray/white surface. This surface was first deformed outwards to
the location in the volume with the highest intensity contrast
between the gray matter and the CSF and, later, it was refined to
generate the pial surface (Dale et al., 1999). Cortical surfaces were
constrained to a spherical topology by applying an automatic topology
correction algorithm (Fischl et al., 2001). Once geometrically accurate
and topologically correct models of both gray/white and pial surfaces
were obtained, the cortical thickness map was generated in the native
brains rather than in the Talairach space in order to increase the
power of statistical tests (Ad-Dab'bagh et al., 2005). Cortical thickness
at each vertex was defined as the average of the shortest distances
between vertices of the gray/white matter boundary and the pial
surface computed in both directions (Fischl and Dale, 2000).

Given the non Euclidian intrinsic geometry of cortical manifolds,
spherical mapping of cortical surfaces were used to project the cortical
thickness maps onto a spherical coordinate system for which a suitable
parameterization, surface registration and basis were previously
provided (Fischl et al.,, 1999a; Van Essen et al.,, 1998). Every thickness
map was then resampled to the spherical average surface using the
correspondence given by the spherical registration algorithm which
aligns each individual cortical folding pattern with the average folding
pattern (Fischl et al., 1999b). Finally, cortical thickness maps were
smoothed by applying linear techniques like iterative nearest neighbor
averaging (Hagler et al., 2006; Han et al., 2006) and non-linear spherical
wavelet-based denoising schemes (Bernal-Rusiel et al., 2008).

The iterative nearest neighbor averaging is a particular case of the
general heat kernel smoothing algorithm (Chung et al., 2005) for two-
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dimensional Riemann manifolds when contributions of the neighbors
of a given vertex to its post-iteration value are equally weighted. It
therefore might provide less isotropic smoothing over the sphere than
the iterative weighted averaging algorithm (Chung et al., 2005).
However, as the average surface is tessellated with an approximately
regular high resolution mesh (7th order subdivided icosahedron),
differences between the iterative weighted averaging and the
iterative nearest neighbor averaging algorithms should be negligible
(Hagler et al., 2006). In addition, iterative nearest neighbor averaging
algorithms are easier to implement and computationally more
efficient than iterative weighted averaging procedures.

In the simulation study, the optimal Gaussian smoothing was
obtained by testing different kernels ranging from 1 to 40 mm, in
steps of 1 mm. Computation time was reduced because the iterative
nearest neighbor averaging algorithm applied to each level of
smoothing benefited from iterations computed for previous kernels.
The optimal wavelet was obtained by varying two parameters of the
filtering process: i) the basis dilation factor d which scales the initial
support of the filters in harmonic space (and therefore in the real
space), and ii) the number of the finest scales ng at which the wavelet
coefficients thresholding procedure was applied (Bernal-Rusiel et al.,
2008).

For the wavelet-based smoothing, cortical thickness maps were re-
interpolated from the mesh of the spherical average surface (7th
order subdivided icosahedron, 163,842 vertices) to a spherical
equiangular grid of 20482 samples. Fast nearest neighbor interpola-
tion based on Delaunay triangulations was always applied (Watson,
1992). The equiangular grid is a mesh for the 2-sphere (5?) defined as:

o= {Onen=s: 0, = ET LN 0, = Phimner

={kEN: k<2B}.

Any function f€1%(S?) of bandwidth {BE2N} can be sampled
without information loss on this grid (Driscoll and Healy, 1994).
Resulting maps were then filtered by using a pyramidal decomposi-
tion based on axis-symmetric spherical discrete wavelet frames
(Wiaux et al., 2008), and again re-interpolated back to the original
icosahedron mesh before statistical analysis. A dyadic discretization
was adopted for the scales of dilation in harmonic space on S? (Starck
et al,, 2006). The same analysis and synthesis filters (defined in
harmonic space) were set at each scale by using a self-invertible filter
bank. The different steps of the decomposition and signal reconstruc-
tion for admissible low-pass filter H and high-pass filter G were
described in detail in Bernal-Rusiel et al. (2008).

In particular, the scale discretized axis-symmetric filters used here
are defined in harmonic space by equations:

= R0) ifl<l./2 (low — pass filter)
&?(271)

H' =0 otherwise

G =1-—H> (high — pass filter)

where ¢ is an axis-symmetric scaling function of the positive real
frequencies on the sphere and is given in harmonic space by:

') =e

The cut-off frequency is given by I. = 2d / /1, where d is the initial
basis dilation factor and the B (bandwidth parameter) frequency
samples are taken uniformly within the interval [0, I.].

Simulating changes in cortical thickness

Performance of cluster size methods depends on parameters such
as smoothness and threshold (Hayasaka and Nichols, 2003) whose
optimal values are determined, in turn, by the size and strength of the
signal. Accordingly, both the spatial extent and the strength of
thickness reduction were modified in parallel in the present study.

In particular, cortical thickness of different regions was artificially
reduced in half of the subjects (experimental group) once individual
cortical thickness maps were resampled to the average surface.
Regions of change were selected by comparing the regional mean
cortical thickness of healthy elderly subjects with AD patients, after
automatic segmentation with Freesurfer. For this analysis, the
unsmoothed thickness maps in subject space were used and multiple
comparisons over the whole brain were corrected with FDR (g-
value =0.01). Significant areas of change were grouped into more
compact regions labeled as frontal, cingulate, temporal, parietal and
occipital cortices (see Table 1).

As illustrated in Fig. 1, synthetic changes were either restricted to a
single cluster within each cortical region (concentrated simulation) or
dispersed in several clusters within each of the above-mentioned
regions (distributed simulation). The number of vertices modified in
each cortical region as well as the extent of change and the mean
percentage range of thickness reduction are detailed in Table 2.

Determining the optimal smoothing and optimal threshold

Sensitivity and specificity for a given cortical thickness analysis can
be defined in more detail as follows:

VomVor g specificity = 1—Vor

sensitivity =
v —Vo Vo

where the random numbers Vop and Vp refer to the number of
unobserved incorrect rejections of the null hypothesis (false posi-
tives) and the number of observed rejections respectively. Addition-
ally, vg is the unknown number of true null hypotheses and v is the
total number of tests.

Table 1
Mean variations in regional cortical thickness when comparing unsmoothed data from
healthy elderly subjects to AD patients.

Region of change Thinning (mm)

Mean (SEM) Atrophy (%) t-test P
Left frontal .08 (.02) 34 3.69 .001
Lateral orbitofrontal gyrus .08 (.03) 35 2,68 .010
Pars opercularis .08 (.03) 3.5 3.03 .005
Pars triangularis .10 (.03) 44 345 .001
Middle frontal gyrus (caudal) .10 (.03) 43 334 .001
Superior frontal gyrus .07 (.03) 2.7 273 010
Precentral gyrus .09 (.03) 3.7 3.03 .005
Left cingulate (isthmus) 13 (.04) 54 347  .001
Left temporal 12 (.03) 4.6 421 .0001
Entorhinal cortex .23 (.08) 7.7 290 .005
Superior temporal sulcus .10 (.03) 45 330 .001
Transverse temporal gyrus .13 (.04) 5.8 297  .005
Middle temporal 11 (.03) 4.2 348  .001
Inferior temporal gryus .11 (.04) 4.0 290 .005
Left parietal .09 (.02) 43 422  .0001
Postcentral gyrus .07 (.02) 3.7 342  .001
Precuneus .09 (.03) 4.0 327 .001
Supramarginal gyrus 12 (.03) 5.0 4.57  .0001
Superior parietal lobule .08 (.03) 3.9 294  .005
Inferior parietal lobule 11 (.03) 4.6 4.00 .0001
Left occipital (cuneus) .08 (.02) 44 345 .001

Note. SEM = standard error of the mean.
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Fig. 1. Cortical regions used for simulating thinning in the experimental group. The main difference between concentrated and distributed simulations was the compactness of
changes introduced within each cortical region: changes in the concentrated simulation were restricted to a single cluster whereas changes in the distributed simulation were spread
in different independent clusters. Clusters of simulated thinning appear white filled in both simulations. Further information about the spatial extent of change and percent range of
thinning introduced in each cortical region in both concentrated and distributed simulations is recollected in Table 2.

Let

t= (Vp—Vop) (1 - @>
Yo

be the trade-off between the number of true discoveries and
specificity, and denote by FDP = “% the random false discovery
proportion. If we assume that Vp>0 (i.e., some thinning is detected in
the statistical map) then t can be expressed as
t = Vo(1—FDP) (1— @> !
Vo

We define the filtering level « as either being an element of the
positive integers Z* or an element of Z*xZ*. In the former case, it
indicates the FWHM of a Gaussian kernel approximation for the linear
filtering, whereas in the latter it refers to the pair (d, ns) applied in the
non-linear filtering. Then ¢ is considered as a function of both « and
the cluster-forming threshold u. applied in cluster size inference
analyses (Hayasaka and Nichols, 2003):

t=fla,ue)

Table 2
Descriptive parameters of regional changes introduced in the simulation study.

Region of #Modified Change size Mean thinning (mm)
change vertices mm? (%) and range of thinning (%)
Concentrated

Left frontal 3540 1753.3 (10) 0.34 (12-15)

Left cingulate 714 286.9 (40) 0.35 (12-15)

Left temporal 2435 1297.9 (20) 0.39 (13-16)

Left parietal 19529 6828.9 (40) 0.35 (14-17)

Left occipital 203 114.8 (10) 0.30 (14-17)
Distributed

Left frontal 7511 4136.9 (30) 0.42 (15-18)

Left cingulate 192 75.1 (10) 0.39 (17-20)

Left temporal 3885 2465.2 (40) 0.46 (16-19)

Left parietal 3379 1927.5 (10) 0.37 (15-18)

Left occipital 362 329.2 (30) 0.35 (17-20)

In the case of vertex-wise analyses, t is considered as only being a
function of a.

In general, the optimal smoothing level o, was operationally
defined as that ensuing from the highest t across filtering levels and
cluster-forming thresholds used in the above simulations:

(aopta ucopt) = argmax (t)

When synthetic changes were considered unknown (same scenario
as in real data analysis), we applied an estimate of ¢ by estimating FDP
and vg in Eq. (I) (see Eq. (II) below). Computation of ¢t leads to the
same optima (Gopy, Uepr) aAS sensitivity by specificity while avoids
introducing excessive errors on the estimate of ¢t due to errors in the
estimation of v — vy,

Statistical inference methods

The univariate general linear model (one-sided two-sample Stu-
dent's T statistic) was applied at each cortical vertex to generate
statistical parametric maps of cortical thickness. Here we propose a
hierarchical methodology to estimate the optimal level of smoothing
associated with the best trade-off given by Eq. (I). Following the original
scheme of Benjamini and Heller (2007), our approach protects against
false positives by controlling the error at the cluster level before
proceeding to vertex-wise FDR. However, rather than controlling the
FDR on clusters as Benjamini and Heller did, we controlled the family-
wise error (FWE) by applying either random field theory (RFT) or
permutation testing (PT) over the smoothed statistical maps. Next, we
apply an adaptive multiple testing procedure over the unsmoothed
statistical maps to control false detections at the vertex level (vertex-
wise FDR) within the clusters. This approach ensures localizing power at
least at the cluster level at the same time as reducing the probability of
false positive clusters, which may increase global vertex-wise FDR in the
second step of the hierarchical method. Results of this procedure were
further contrasted with cluster- and vertex-wise parametric and
nonparametric traditional testing and with vertex-wise FDR separately,
in simulated and real datasets.
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Cluster- and vertex-based inference by applying RFT- and PT-based
methods

Cluster size inference techniques are among the most widely used
statistical approaches to detect changes in functional neuroimaging,
while their use is rare in anatomical studies. These methods test
whether or not the spatial extent of a given cluster, which is obtained
after thresholding the statistical map with an arbitrary cluster-
forming threshold, is unusually large by chance alone. These tests
show higher sensitivity than vertex-wise thresholding methods, par-
ticularly when changes are spatially extended (Friston et al., 1996).
Unlike RFT-based methods that may require a high level of smoothing
and a high statistical threshold to perform well (Friston et al., 1994),
PT only requires weak distributional assumptions (Nichols and
Holmes, 2001; Holmes et al., 1996) and provides a good estimation
for any setting including low cluster-forming thresholds and low
smoothed maps (Hayasaka and Nichols, 2003).

We approximated the true null distribution of the cluster size by
applying parametric RFT as implemented in the SurfStat toolbox
(http://www.math.mcgill.ca/keith/surfstat/), and nonparametric PT
as implemented in Freesurfer release 4.0.5 (http://surfer.nmr.mgh.
harvard.edu/). Three cluster-forming significance thresholds were
investigated corresponding to p-values of 0.05, 0.01 and 0.005. As RFT
methods require a high statistical threshold, only the two latter were
used. Cluster- and vertex-wise corrected p-values were obtained
based on the distributions of the largest cluster size and the vertex
maximum significance respectively (10,000 permutations were
computed for PT as recommended in http://www.fmrib.ox.ac.uk/
fsl/randomise/index.html). The FWE rate was set at 0.05 in all cases.

Vertex-based thresholding by FDR

Vertex-wise FDR procedures have gained in popularity in the last
few years due to their properties to provide sensitive statistical
thresholds for determining changes in cortical thickness maps (Singh
et al.,, 2006; Lerch et al., 2005). Instead of controlling the FWE, these
methods focus on a less stringent measure of the Type I Error. FDR is
the mathematical expectation of the false discovery proportion:

FDR = E(FDP) = E(@)
Vp

The procedure of Benjamini and Hochberg (1995) provides a con-
servative control of FDR at the level g

FDR < %ng.

The first inequality becomes equality when the distributions of the
statistical tests are continuous. In the analysis of the entire cortex, the
proportion 70 is assumed to be close to 1 and reasonably ignored. Here
Vo is estimated by using an adaptive two-stage procedure (Benjamini
et al., 2006) which allows for tight control of FDR within small clusters
of contiguous vertices.

FDR analysis can lead to highly tolerant statistical thresholds even
for low smoothed maps if the signal vertices constitute a large part of
the cluster. This feature could be exploited to improve sensitivity by
subdividing the global analysis into several smaller regional analyses
where a significant number of vertices contain signal. Another good
property of the FDR analysis relevant to our study is that besides
controlling the expectation of the FDP it gives bounds for the variance:

Var(FDP) = E(FDPZ) —FDR?

AsO<FDP<1 then

E(FDPZ)SE(FDP) and Var(FDP) < FDR—FDR.

Therefore, if the g-value for the FDR is small enough the dis-
tribution of the FDP is sharp around its mean which will allow us to
estimate its value at a given realization by its expected value. In the
present study, the FDR was controlled at a 0.05 level, meaning that on
average only 5% of the significant vertices are false positives and that
the variance of this estimate is below 0.0475.

The FDR procedure suffers from a fundamental drawback. It
assumes that signal only exists in a discrete subset of vertices within a
cluster and that thickness at each vertex within the cluster either
changes or not. When smoothing is applied the signal spreads to
everywhere within the cluster becoming continuous rather than
discrete (Chumbley and Friston, 2009). In addition, smoothing
introduces change into vertices that have not truly changed but are
neighbors of vertices showing true thinning. The resulting increase in
false discoveries cannot be controlled by vertex-based FDR analysis.
Therefore, conventional vertex-wise FDR procedures should not be
used after spatial smoothing because it drastically increases the true
FDP above the expected value, as will be shown in simulation analysis.

Hierarchical cluster- and vertex-based statistical thresholding (HT)

Estimation of the optimal smoothing in real data relies on estimation
of Eq. (I). Parameters unknown in this equation are the global FDP and
the global number of true null vertices vo. FDR could be used as an
estimator of FDP. But the FDR value is also unknown because, as
mentioned above, traditional thresholding methods do not provide any
control for this error after smoothing which can lead to disproportionate
error rates (Logan et al., 2008). Alternatively, some regions could be
initially delimited by applying cluster-based inference methods to the
smoothed maps and then used for regional FDR analyses on the
unsmoothed map. However, a minimal spatial smoothing is required to
reduce errors derived from registration and cortical thickness measure-
ments. This error source impedes applying FDR directly over un-
smoothed statistical maps. To overcome this limitation, raw individual
thickness maps were denoised (as a preprocessing step) by using sharp
wavelets with a dilation factor of 3 and only thresholding the last finest
scale of the decomposition. The high resolution intrinsic to the non-
linear spherical registration algorithm and the submillimeter precision
of the thickness maps justify the low smoothing level (Fischl and Dale,
2000; Fischl et al., 1999b).

The global FDP of Eq. (I) can be estimated by the global FDR
because the HT methodology (schematically illustrated in Fig. 2)
significantly reduces the number of false positive vertices resulting
from spatial smoothing. The global FDR (FDRgjobai), in turn, is approx-
imated by the regional FDR (FDRregionat):

FDP = FDRglobaleDRregionalzq

where FDRiegional 1S the vertex-wise FDR value controlled within the
clusters at the level g by the adaptive FDR procedure (Benjamini et al.,
2006).

FDRgiobal is expected to be slightly more liberal when compared
with FDRyegiona. However, the contribution of this error source is
negligible due to (i) the strong control that FWE impose for false
positive clusters, and (ii) the weak FWE control that FDR procedures
impose for false positive vertices when the null hypothesis is true for a
cluster erroneously detected (Nichols, 2007).

To estimate vy, let n be the number of clusters detected by cluster
size inference and m; the number of vertices in the cluster i, i=1...n.
We estimate the number of null vertices {91, %o, ..., 00,1} for each
cluster in the first stage of the adaptive procedure applied to the
unsmoothed statistical map inside each cluster (Benjamini et al.,
2006). Then, the global vg can be estimated as:

M-

A A
Vg =v— m;—Vy;.

i=1
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Fig. 2. Flow chart illustrating a schematic representation of the sequential hierarchical thresholding (HT) procedure. Raw individual thickness maps are firstly denoised using sharp
spherical wavelets and subsequently smoothed with either Gaussian or spherical wavelet-based filters resulting in individual “unsmoothed” and smoothed thickness maps,
respectively. Next, cluster size thresholding is applied to smoothed maps to determine cluster-like regions of interest of significant variation. Finally these clusters are transferred to
the “unsmoothed” statistical map and adaptive false discovery rate (FDR) procedure is applied at each cluster separately to control the vertex-wise false detection.

Eq. (I) can now be estimated as:

? = Vp(1—q) (1"”"> ()

Vo

The optimal smoothing level can be estimated now by the following
equation:

A

(OLOPt~ ﬁcopt) = argmax (’t‘) (1)

Note that errors in the estimation of vy have a minimal impact on
Eq. (II) because V,,q<<00 and the factor ( 1— % ~1.In fact, \A/O can be

substituted by v (the total number of vertices) (:as in the FDR procedure
of Benjamini and Hochberg (1995).

The HT methodology applied to cortical thinning detection has the
power to decrease false positive discoveries resulting from spatial
smoothing without a huge loss of sensitivity, as typically occurs with
other approaches (e.g., Lerch and Evans, 2005). Even though vertex-
wise thinning detection in the HT approach is always performed on
slightly smoothed maps, sensitivity is comparable to that achieved
with either cluster-based inference or traditional vertex-wise FDR
obtained from smoothed statistical maps, as will be demonstrated

with simulated data. The high sensitivity obtained with the HT
methodology is caused by different reasons: i) because the multiple
comparison problem that FDR procedures face is much less severe
within the cluster; ii) because the proportion of vertices exhibiting
thinning within the clusters is high and the chance for false positives
low; iii) because a larger absolute value of false positives can be
tolerated when detections within the clusters increase (Langers et al.,
2007; Nichols, 2007); and iv) because the application of a sequential
two-stage adaptive FDR procedure provides a tighter control of the
FDR (Benjamini et al., 2006).

An important property of the HT methodology is that under the
null hypothesis, the probability of finding one or more erroneous
clusters is much less than the FWE of the cluster-based inference
alone; whereas under the alternative hypothesis, the strong control of
the FWE provides localizing power at least at the level of cluster. If
cluster and vertex-wise statistics are independent and/or if indepen-
dent data is used for cluster and FDR inference, then the FWE revealed
by the HT will be the product of the FWE at the two levels. In these
cases, the FDR procedure within the clusters will yield a FDRyegional
under the alternative hypothesis extremely close to the pre-imposed
g-value (Benjamini and Heller, 2007) which will improve t estimation
by Eq. (II). Although results extracted from the two inference steps of
the HT procedure are based on different features - spatial extent of
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the cluster in the smoothed data and height of the unsmoothed vertex
T statistic - they may covary. However, a good estimation of cp is still
expected if the two statistics shows low correlations. The precision of
this estimation was tested with the concentrated and distributed
simulations described above, while the null simulations explained in
the next section were used to estimate the actual FWE obtained with
the HT methodology.

In the following, we will refer to the HT methodology as RFTyr or
PTyr depending on whether the cluster-based inference is achieved by
means of RFT- or PT-based methods, respectively.

Null simulations

Determining the optimal level of smoothing based on the
statistical results requires testing a range of kernels, while testing
several cluster-forming thresholds is optional. In any case, the
problem of multiple comparisons may inflate the false positive rate.
We tested these hypotheses with null simulations. For each
simulation, we generated 50 white Gaussian noise spherical maps
(6th order subdivided icosahedron, 40,962 vertices), and applied a
two-sample t-test with equal sample sizes after smoothing the maps.
Next, the RFTyr method was performed over the resulting statistical
map. To test the severity of the multiple comparison problem
mentioned above, we first tuned the number of smoothing kernels
(1 vs. 20 kernels from 1 to 20 mm) for one cluster-forming threshold
(0.01), and next tested the effect of increasing the number of cluster-
forming thresholds (2 or 3) while fixing the number of smoothing
kernels (20). For each value of these parameters (number of
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smoothing kernels and number of cluster-forming thresholds), a
total of 10,000 independent simulations were generated to compute
the FWE.

Additionally, experiments with a single cluster-forming threshold
(0.01) and a single level of smoothing (repeated separately for
smoothing kernels from 2 to 12 mm, in steps of 2 mm) allowed us to
test whether the FWE for the HT methodology was not far above
0.0025 as predicted if sequential test statistics were independent.

Results

Assessing performance of different statistical approaches on simulated
cortical thinning

Before adding synthetic changes to the cortical maps, thickness
was compared between groups to ensure that no bias was accidentally
introduced. As expected, no group differences in thickness were found
for any thresholding method after applying either Gaussian or
wavelet-based smoothing.

Performance of all statistical approaches at detecting group
differences in simulated thinning in the whole brain varied with the
level of smoothing. Fig. 3 illustrates how the trade-off between
sensitivity and specificity increases up to a kernel width and then
declines. This behavior is particularly evident in the concentrated
simulation (Fig. 3, left panel). When comparing the different
statistical methods, inference obtained with vertex-wise techniques
was the less sensitive approach while the HT method yielded the best
trade-off.
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Fig. 3. Concentrated (left panel) and distributed (right panel) simulations of cortical thinning. Testing (i) trade-off between sensitivity and specificity and (ii) false discovery
proportion (FDP) against a range of Gaussian smoothing widths (from 1 to 40 mm, only displayed until 30 mm) with different statistical methods: false discovery rate (FDR), cluster
thresholding- (CT) and vertex-wise thresholding (VT) methods, and the hierarchical thresholding (HT) procedure. Results obtained with FDR and random field theory- (RFT) based
methods are shown in the top panel; whereas results revealed by FDR and permutation testing- (PT) based methods are shown in the bottom panel.
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Fig. 3 additionally shows the rapid increase of the FDP as smoothing
gets wider. This effect is observed for all inference methods except for
the HT, and appears more remarkable in the distributed simulation.
From a kernel width of 2-mm forward, FDP was above 0.05 for the FDR
and cluster-wise methods in both simulations. When the Gaussian
kernel approximation was set at 20 mm, a common setting used in
cortical thickness analysis (Charil et al., 2007; Singh et al., 2006; Lerch
et al., 2005; Chung et al., 2003), FDP was above 0.3 in the concentrated
simulation and above 0.5 in the distributed simulation. Interestingly, the
HT approach kept the FDP close to its expected value (0.05) for any level
of smoothing (below 0.09 in the concentrated simulation and below
0.17 in the distributed simulation). These results reveal that the HT
methodology reaches the sensitivity of FDR and cluster-based proce-
dures at the same time as keeping the FDP at a low level with inde-
pendence from the Gaussian smoothing width.

Determining optimal smoothing and detection parameters on simulated
cortical thinning

Optimal level of smoothing also varied across the different thresh-
olding methods. Tables 3 and 4 show the t values and the FDP obtained
with the optimal smoothing and optimal cluster-forming threshold (or
imposed g-value for the FDR of 0.05) for each statistical method in both
the concentrated and distributed simulations. In general, larger
smoothing kernels were required for less sensitive methods (e.g.,
vertex-wise methods). This was true for Gaussian and wavelet-based
spatial filters. More specifically, when the cluster-forming thresholding
was similar in the two methods, for narrow optimal Gaussian kernel
approximations the optimal wavelet filters showed smaller dilation
factors (d) and fewer numbers of thresholded-finest decomposition
levels (ns) in contrast to relatively wide kernels. Interestingly, the FDP
was closer to the expected value when wavelet-based smoothing was
applied to distributed simulations of cortical thinning; whereas it was
much higher in the distributed than in the concentrated simulation
when using Gaussian filters. The latter result suggests that conventional
statistical inference methods may increase their specificity after
applying wavelet smoothing to real cortical thickness data.

The better performance of the HT methodology over the others
was mainly evident when simulated group differences were assumed
to be unknown. We refer to this analysis as “realistic data” in Tables 3

Table 3
Optimal smoothing in concentrated simulations based on whole brain analyses.

Smoothing procedure

Statistical Concentrated simulation Realistic data

thresholding

Gaussian Peluster  FWHM ¢ FDP  peuster  FWHM £ FDP
FDR _ 9 248718 .16 _ 40 580384 .58

RFTcr .01 9 249394 .12 .01 39 51890.5 .53

RFTyr _ 24 238235 .16 _ 40 36307.3 .35

RFTyr .01 9 24899.8 .07 .01 11 25969.6 .08

PTcr .01 9 249388 .12 .01 40 52666.8 .53

PTyr _ 10 15092.7 .01 _ 40 21416.2 .63

PTyr .05 6 249173 .06 .05 5 268475 .11

Wavelet Peuster d,ns € FDP peuseer d,ns FDP
FDR _ 36,1 24888.1 .15 _ 36,3 56266.8 .56

RFTcr .01 16,2 249578 .11 .01 28,3 454432 .46

RFTyt _ 94,1 23863.7 17 _ 36,3 316052 .28

RFTyr .01 41,1 24908.1 .10 .01 19,2 259213 .08

PTcr .01 8,3 249615 .12 .01 36,3 515798 .61

PTyr _ 18,2 167944 .01 _ 34,3 204782 .51

PTyr .05 24,1 249239 .10 .05 9,2 269246 .11

Note. peuster = cluster-forming p-value; t = true positives x specificity; FDP = false
discovery proportion; f = estimate of t; d = dilation factor; ny = number of
thresholded finest scales. FWHM = full width at half maximum for the Gaussian kernel
approximation.

Table 4
Optimal smoothing in distributed simulations based on whole brain analyses.

Smoothing procedure

Statistical Distributed simulation Realistic data

thresholding

Gaussian Deluster  FWHM ¢ FDP  pcuster FWHM t FDP
FDR _ 8 143749 22 _ 40 519843 .74

RFTcr .01 6 14199.8 .16 .01 40 43831.1 .73

RFTyr _ 19 124278 20 _ 40 25579.7 .57

RFTyr .005 14 143412 .16 .005 14 16421.8 .16

PTcr .01 5 138758 .11 .05 40 649909 .80

PTyr _ 35 86558 .59 _ 40 22653.8 .66

PTyr .01 5 13878.7 .11  .005 7 15179.7 .13

Wavelet Peuster d, N5t FDP pouser d,ns  © FDP
FDR _ 30,1 14366.5 .16 _ 15,3 277204 .49

RFTcr .01 3,1 142755 .12 .01 15,3 249644 49

RFTyr _ 79,1 124406 .16 _ 30,2 136103 .14

RFTyr .005 59,1 143445 .10 .01 8,3 16409.6 .18

PTcr .005 19,1 138959 .16 .05 15,3 21676.6 .61

PTyr _ 23,1 79743 .01 _ 12,3 8225.0 .30

PTyr .005 19,1 13896.1 .10 .01 27,1 152895 .14

Note. peuster = cluster-forming p-value; t = true positives x specificity; FDP = false

discovery proportion; t = estimate of t; d = dilation factor; ny = number of
thresholded finest scales. FWHM = full width at half maximum for the Gaussian kernel
approximation.

and 4. The kernel width was determined on the basis of the maximum
value for £ (Eq. II). The HT methodology was the only procedure that
always yielded FDPs equal to or less than 0.16. Therefore, the higher
sensitivity often shown by FDR and cluster-based methods when
compared to the HT approach is only apparent, because more than
~45% of detected vertices were false positives. Also note that the HT
approach is the only method for which f reasonably approximates t
and for which &opt is close to its true optimal value. This issue is
critical to approximate optimization of the Gaussian kernel and detec-
tion parameters in real data analyses where the true changes are a
priori unknown.

Tables 5 and 6 include the number and proportion of true positive
vertices detected by each statistical procedure at the optimal kernel
for regions where concentrated and distributed thinning was
simulated, respectively. Both concentrated and distributed synthetic
changes introduced within the occipital region (cuneus) were equally
neglected by all methods except for the FDR procedure; whereas
thinning of the cingulate region (isthmus) was especially neglected in
the distributed simulation. The high sensitivity of FDR was however

Table 5
Detection results by different statistical thresholding methods for each region where
concentrated changes were simulated (whole brain analysis).

Statistical Regions where concentrated changes were simulated
LG Frontal Cingulate  Temporal Parietal Occipital
(FWHM)

FDR (o)

TP no. (%) 3507 (99.1) 598 (83.5) 2222 (91.2) 19082 (97.7) 169 (83.2)
RFT¢r (9)

TP no. (%) 3429 (96.9) 603 (84.4) 2225 (91.4) 19094 (97.8) 0
RFTyr (24)

TP no. (%) 2992 (845) 521(73) 2077 (85.3) 18983 (97.2) O
RFThr (9)

TP no. (%) 3179 (89.8) 603 (84.4) 2162 (88.8) 19054 (97.6) O
PTcr (o)

TP no. (%) 3429 (96.9) 603 (84.4) 2225 (91.4) 19094 (97.8) 0
PTvr (10

TDV no. (%) 1623 (45.8) 256 (35.8) 976 (40.1) 12243 (62.7) 12 (5.9)
PTur (6)

TP no. (%) 3185(90) 631 (88.4) 2172 (89.2) 19214 (984) 0

Note. TP = true positive vertices.
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Table 6
Detection results by different statistical thresholding methods for each region where
distributed changes were simulated (whole brain analysis).

Table 7
Region-based optimal smoothing of distributed simulation and realistic data in occipital
and cingulate cortices.

Regions where distributed changes were simulated

Smoothing procedure

Statistical
thresholding (pwiim)

Frontal Cingulate Temporal Parietal Occipital

FDR (s,

TP no. (%) 7323 (97.5) 24 (12.5) 3601 (92.7) 3301 (97.7) 299 (82.6)

TP no. (%) 7239 (96.4) 24 (12.5) 3609 (92.9) 3306 (97.8) 0
RFTvr (19)

TP no. (%) 7011 (933) 0 2871 (73.9) 2851 (844) 0
RFTr (14)

TP no. (%) 7367 (98.1) 22 (11.5) 3665 (93.3) 3314 (98.1) 0
PTcr (s)

TP no. (%) 7197 (95.8) 0 3580 (92.1) 3287 (973) O
PTvr (35

TP no. (%) 5445 (72.5) 64 (33.3) 2376 (61.2) 1507 (446) O
PThr (5)

TP no. (%) 7197 (95.8) 0 3580 (92.1) 3287 (973) O

Note. TP = true positive vertices.

misleading if we consider the high proportion of false positives detected
at the optimal kernel (between around 15% and 20%) when compared to
the HT methodology (below 10%) (see Tables 3 and 4). All methods
yielded a satisfactory level of global thinning detection within the
remaining cortical regions in both simulations. However, of relevance is
that the HT approach besides achieving similar sensitivity as the cluster-
based methods, it reduced the probability that the difference between
groups could have arisen by chance in the majority of cases (as derived
from analyses over null simulations, see next section).

The poor performance of the cluster-based methods within occipital
and cingulate regions may be accounted for by the difficulty of defining
the initial cluster-forming threshold (e.g., Smith and Nichols, 2009;
Hayasaka and Nichols, 2003), particularly when both spatially reduced
and extended regions are simultaneously affected by significant
thinning reduction. In agreement with this notion, region-based
analyses increased thinning detection within these particular regions
in the simulated data (Table 7). However, only HT yielded a good
estimate of thinning detection in the two regions independently of
whether linear or non-linear smoothing procedures were applied.
Indeed, the HT approach found 100% of true positive vertices in the two
regions after estimating the optimal wavelet smoothing and a lower
(but still relatively high) proportion (around 70%) when estimating the
optimal FWHM for the Gaussian kernel approximation.

Results of null simulations

Determining the optimal level of smoothing based on statistical
results requires testing a broad range of kernels, which leads to a
problem of multiple comparisons. The false positive rate may be
inflated even more if the experimenter further decides to test several
cluster-forming levels. Two results support this notion, i) RFTyr
applied over null simulations revealed an increase of the FWE when
testing 20 smoothing kernels as compared with only one kernel (see
Table 8); and ii) the FWE grew up with increasing the number of
cluster-forming thresholds. Importantly, when the cluster-forming
threshold was fixed, the false positive rate resulting from testing 20
smoothing kernels was maintained below 0.05 (expected FWE for the
cluster-based inference alone when applied with a single cluster-
forming threshold and a single level of smoothing). These findings
suggest that although the method is valid for optimizing the
smoothing level, one must be cautious when testing several cluster-
forming thresholds.

Additionally, null simulations allowed us to determine how far is the
actual FWE from 0.0025 which would be expected if cluster and vertex-
wise tests statistics were independent. However, as indicated in Table 8,

Statistical thresholding  Occipital Cingulate

Distributed simulation

Gaussian Pcluster FWHM TP (%) Pcluster FWHM P (%)
FDR _ 2 85.2 _ 1 97.1
RFTcr .01 5 70.8 .005 25 16.1
RFTyr _ 9 78.0 _ 26 14.4
RFTyr .01 7 76.4 .01 27 100

Wavelet Deluster @, 75 TP (%)  Ppectuster d, 75 TP (%)
FDR _ 3,1 90.6 _ 3,1 100
RFT¢r .01 3,1 91.2 .005 3,1 100
RFTyr _ 33,1 79.4 _ 4,1 100
RFTur .01 3,1 91.2 .005 3,1 100

Realistic data

Gaussian Petuser  FWHM TP (%) Peruster  FWHM TP (%)
FDR _ 36 17.6 _ 40 7.7
RFT¢r .01 15 40.3 .01 40 8.7
RFTyr _ 9 78.0 _ 40 9.0
RFTur .01 5 73.1 .01 27 100

Wavelet Pcluster d » N TP (%) Pcluster d ) s P (%)
FDR _ 28,2 30.1 _ 3,1 100
RFTcr .01 14,3 324 .01 81,1 113
RFTyr _ 81,1 29.8 _ 4,1 100
RFTyr .01 22,1 723 .005 3,1 100

Note. pauster = cluster-forming p-value; TP (%) = percent of true positive vertices; d =
dilation factor; ny = number of thresholded finest scales. FWHM = full width at half
maximum for the Gaussian kernel approximation.

the FWE was above of this expected value for several smoothing kernels,
suggesting some correlation between the two statistical tests. Indeed,
the FWE was up to three times 0.0025 (for a kernel of 6 mm) indicating
that a similar relation can happen under the alternative hypothesis
between the actual FDP and its expected value of 0.05 (e.g., FDP=0.16
at the optimal setting in the distributed simulation). This error source
for the estimation of the optimal level of smoothing (by means of
Eq. (IlI)) did not prevent in practice a good estimation of the optimal
smoothing level o, as shown in the analyses over simulated signals.
Note that this estimation was not possible with the other inference
methods because of their increasing FDP with increasing smoothing
level, leading to very inflated values of FDP for high smoothing levels.

Validation of optimal smoothing and detection parameters with HT
methodology in real population data

The HT model revealed that the best trade-off between sensitivity
and specificity with Gaussian smoothing was obtained with kernels
smaller than 7 mm for the two cortical hemispheres (see Table 9).
Wavelet-based smoothing provided comparable results, but permu-
tation tests required less smoothing than random field methods to

Table 8
Results of null simulations with FWE rate for the cluster size inference controlled at the
0.05 level and vertex-wise FDR controlled at a 0.05 g-value.

Cluster-forming p-value Smoothing range (mm) FWE
.01 2 .0057
4 .0064
6 .0076
8 .0066
10 .0062
12 .0069
.01 1:20 .0422
.01; .005 1:20 .0586
.01; .005; .001 1:20 1

Note. FWE = family-wise error for the RFTyr; mm=nmillimeters.
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Table 9
Estimate of global optimal smoothing by HT in real data.

Smoothing procedure

Statistical thresholding Dt Left hemisphere Right hemisphere
Gaussian FWHM ¢ FWHM ¢

RFTyr .01 6 9752.3 7 11391.0
PTyr .05 2 8539.4 3 10880.1
Wavelet d,ng t d,ng t

RFTyt .01 27,1 10155.1 30,1 11853.6
PTur .05 7,1 8485.6 8,1 10885.8

Note. pejuster = cluster-forming p-value; t = estimate of t (t = true positives x specificity);
d = dilation factor; ng = number of thresholded finest scales. FWHM = full width at half
maximum for the Gaussian kernel approximation.

obtain optimal results. The reason for this is that PT uses more liberal
cluster-forming thresholds at the optimal setting (p =0.05) as com-
pared to RFT (p=0.01).

These results were compared to those yielded by FDR and by
cluster- and vertex-based inference methods with a Gaussian kernel
approximation of 20 mm, because this setting has frequently been
used in prior studies of cortical thickness (e.g., Charil et al., 2007;
Singh et al., 2006; Lerch et al., 2005; Chung et al., 2003). In general, the
extent of detection was much smaller when applying the HT
methodology (7.6%) than either FDR (56.2%) or cluster-based random
field test (40.6%), but higher as compared with vertex-wise inference
methods (3.4%). Differences in thinning detection for each statistical
thresholding method are shown in Fig. 4.

Results obtained with the HT methodology on real thickness data
showed that bilateral entorhinal cortex was the region most
extensively affected (thinning of 56.3% and 73.4% of the left and
right entorhinal cortex, respectively), followed by parahippocampal
cortex mainly in the left hemisphere (24.7%), the pars triangularis and
pars opercularis of the inferior frontal gyrus mainly in the right side
(22.6%), and the right superior parietal lobe (21.1%). Conventional
methods pointed to other structures that were similarly or more
affected than regions of the medial temporal lobe as the bilateral
inferior frontal gyrus (pars triangularis), the left inferior parietal
gyrus, and the left supramarginal gyrus. In all these cortical regions,
RFTyr produced approximately 75% less detection on average relative
to FDR or cluster-based tests. Interestingly, in the left inferior
temporal gyrus, where cluster-based tests failed to detect changes,
the HT methodology showed significant thinning in 11.6% of the
region. As revealed by simulation analyses, the reduced number of
vertices where the HT localized significant thinning suggests that
decreased estimation of sensitivity was compensated by keeping the
FDP close to its expected value. But even more important is the fact
that HT was the only procedure able to approximate an optimal level
of smoothing to apply in cortical thickness analysis. This fact is
illustrated in Fig. 5, where the performance of FDR, cluster- and
vertex-wise methods is overlapped for the left and right cortical
hemisphere to show how the kernel width and f increase in parallel;
whereas HT yields the expected inverted-U shape relationship
between the size of smoothing kernel (or dilation factor for the
wavelets) and the performance of the method.

Discussion

The main objective of the present study was to determine the
optimal level of smoothing able to provide the best trade-off between
sensitivity and specificity at detecting significant variations in cortical
thickness maps. To achieve this goal we propose a sequential
hierarchical methodology combining cluster- and vertex-based
thresholding methods. The performance of hierarchical thresholding
(HT) was compared with other widely used statistical inference
procedures in both simulated and real data from healthy elderly

subjects and AD patients. In most of the situations, the HT
methodology performed better when compared to either cluster-
and vertex-based FWE or vertex-based FDR procedures. The enhanced
performance was independent of the spatial smoothing algorithm
(Gaussian or wavelet), and of whether correction for multiple
comparisons were based on RFT or PT methods. HT might be used
not only to optimize the extent of smoothing but also the initial
cluster-forming threshold for the cluster-based inference. However,
including several cluster-forming thresholds in the numerical opti-
mization may severely increase the FWE rate as suggested by the null
simulation results.

Results from concentrated and distributed simulations showed that
application of conventional thresholding methods (FDR, RFT and PT)
tends to overestimate the extent of thinning as smoothing increases.
This fact is particularly evident when distributed changes of cortical
thickness were reproduced, due to inflated rates of false discoveries. In
agreement with these findings, prior studies have noted that conven-
tional thresholding methods are not able to provide any control of
voxel-wise error measure with increasing smoothing under the
alternative hypothesis (Chumbley and Friston, 2009; Logan et al,
2008). They only provide reliable information about the local maxima
of suprathreshold regions but not about individual vertices in the
statistical parametric map. Therefore, interpretation in these cases
should be based on the location of those maxima rather than on the
spatial extent of the detected signal. However, experimental reports
based on coordinates of local maxima in smoothed SPMs suffer from
spatial imprecision due to shifting and/or merging of adjacent signal
peaks or clusters (Reimold et al, 2006; Mikl et al., 2008). Our HT
approach provides a solution to the spatial precision problem by
limiting the proportion of vertex-wise false discoveries among all the
discoveries inside the spatial support of a significant cluster. Controlling
the vertex-wise error is also critical if we are pursuing the optimization
of the trade-off between sensitivity and specificity, two measures
directly related to the signal detection theory. This optimization may
further increase the anatomical precision of the observed cortical
thinning pattern. Inspired by the hierarchical thresholding scheme of
Benjamini and Heller (2007), our approach firstly controls the error at
the level of clusters and then at the level of vertices within significant
clusters detected in the first step. Application of this procedure to
simulated thinning showed that the true global FDP with optimal
settings was always not far from the pre-imposed g-value for the
FDRyegional, suggesting that the HT methodology may be effective to
approximately optimize the above-mentioned criterion by means of
Eq. (IIl) (see Materials and methods).

Smoothing in cortical thickness analysis is typically applied to
enhance both the quality of the raw image and the sensitivity of
statistical inference (Smith and Nichols, 2009; Han et al. 2006; Lerch
and Evans, 2005). However, the HT method is only devoted to
optimize smoothing for the latter purpose. In fact, the denoising
smoothing level is fixed in the HT method as a preprocessing step to
reduce measurement noise and registration variability after resam-
pling the maps to the average surface. We refer to the statistical map
resulting from this preprocessing step as the “unsmoothed statistical
map” which dictates the resolution of our findings. Consequently, any
null vertices becoming non-null at this step are considered as part of
the true signal for further analyses. That first smoothing level
introduced by the HT method is small because of the high resolution
of the spherical registration algorithm and the submillimeter
precision of the thickness maps. The additional smoothing required
by the statistical inference has a twofold purpose. On the one hand,
each vertex finds support from its neighbors which are part of the
same signal cluster and, on the other, it seeks to reduce the effective
number of comparisons (Smith and Nichols, 2009). Maximum
sensitivity (detection of weak signals) usually needs larger smoothing
levels on the statistical map which, in turn, not only introduces an
uncontrolled number of false positives but also erroneously extends
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Fig. 4. P-value maps resulting from cortical thickness comparison between healthy elderly subjects (N = 53) and mild-to-moderate Alzheimer's patients (N = 53). Variation in thickness are displayed after applying false discovery rate (FDR)
(left upper corner), cluster thresholding-based methods (right upper corner), and vertex-wise thresholding methods (left bottom corner) based on random field theory (RFTcr and RFTyr) with a kernel width of 20 mm. Results obtained with
the hierarchical thresholding procedure based on RFT (RFTyr) at the optimal wavelet parameters (left hemisphere: dilation factor of 27 at the finest scale, right hemisphere: dilation factor of 30 at the finest scale) and cluster-forming threshold
(p=0.01) are shown in the right bottom corner.
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Fig. 5. Estimate of t (see Eq. (II) in Methods) provided by FDR, cluster- and vertex-wise
inference methods based on random field theory (RFT) for the left and right
hemisphere (top panel) and by the hierarchical thresholding (HT) procedure (bottom
panel) across different widths of the Gaussian kernel approximation in the whole brain
analysis of the real data set.

local thinning to other cortical regions. To counteract this effect, the
HT methodology allocates clusters obtained over the smoothed
statistical map into the “unsmoothed statistical map”.

Our results show that although the final vertex-wise detection
within the clusters was performed over the “unsmoothed statistical
map”, sensitivity was still high enough due to the better performance
of FDR procedures applied to separated regions as well as to their
lower conservativeness for low smoothed signals when compared
with other approaches like e.g., RFT based on maximum vertex
statistic (Langers et al, 2007; Genovese et al., 2002). It is important to
note that the improved change detection is achieved without the cost
of significant loss in image resolution. Sensitivity was further
improved for those clusters with low strength signals by employing
the recently developed two-stage adaptive FDR procedure (Benjamini
et al., 2006), which mainly provides a tighter control of FDR (making
the FDR value closer to the chosen g-value).

Results from the comparison between smoothing methods suggest
that the non-linear spherical wavelet spatial filtering is a good
alternative to surface-based Gaussian smoothing approximations
even when using traditional statistical methods. Indeed, the former
improved the optimization criterion for both whole brain and region-
based statistical analyses. This result is mainly due to adaptive
properties of spherical wavelets that increase sensitivity and decrease
the blurring effect typically introduced by the Gaussian approxima-
tion which, in turn, improved the specificity of the cortical thinning
detection, as was previously demonstrated in simulated data under
several signal-to-noise ratios (Bernal-Rusiel et al., 2008). In agree-
ment with this, as the bandwidth goes to infinity, the approximation
to Gaussian kernel converges to the sample mean of data on a cortical
manifold (Chung et al., 2005), thus eliminating any spatial variation in
the individual cortical thickness map. The suppression of apparently
undersized but relevant details in thickness maps constitutes an
important motivation for using non-linear smoothing methods based

on spherical wavelet transformations (Bernal-Rusiel et al., 2008; for
an fMRI study using 3D-Euclidean wavelets see Wink and Roerdink
(2004)). As smoothness of the resulting statistical map is estimated
from the residuals of the general linear model (Worsley et al., 1999),
RFT can also be applied after wavelet-based smoothing of the
individual cortical thickness maps. In fact, RFT enhanced cortical
thinning detection in our simulation experiments when combined
with the wavelet-based filtering.

The enhanced performance of the wavelet-based approach over
the Gaussian smoothing cannot be accounted for by the fact that
artificial thinning was introduced in a discrete manner, by directly
reducing cortical thickness in several clusters of contiguous vertices of
the unsmoothed maps. On the contrary, iterative nearest neighbor
smoothing (the approximation of Gaussian kernel smoothing on the
surface proposed by Hagler et al., 2006 and Han et al., 2006), as an
inherently discrete procedure, should benefit more from this kind of
simulations than the wavelet-based filtering, which was implemented
on harmonic space by using the fast Spherical Fourier Transform
(Healy et al., 2003). In addition, our discrete simulations were
specifically designed to keep the inter-subject variability of the real
data at each vertex, becoming similar to what is typically observed in
unsmoothed real data sets. The adequate design of these simulations
is also supported by the fact that the performance of HT resulted in
inverted-U curves with increasing smoothing when applied to real
data, reproducing the pattern of results obtained in simulated data.
Continuous simulations where cortical thinning is directly introduced
in the T1 image (Lerch and Evans, 2005) may provide a more realistic
view, but they preclude exact definition of the region of change.

Although wavelet filtering outperforms the Gaussian spatial
smoothing in cortical thickness maps, it is still suboptimal and should
be an issue of further improvement. This algorithm has been proved to
be asymptotically optimal only for orthonormal (or biorthogonal)
wavelet basis (Donoho, 1995; Donoho and Johnstone, 1994) whereas
our representation is a redundant tight frame. Better results can be
achieved by devising optimal wavelet coefficient thresholding
techniques for the redundant spherical basis, as recently shown in a
study on redundant Euclidean's space systems (Raphan and Simon-
celli, 2008).

Results from comparing whole brain and region-based analyses
confirm that the size of the search region as well as the extent and
strength of the signal clusters is an important constraint influencing
the level of smoothing required for optimizing sensitivity (see also
Bernal-Rusiel et al., 2008). These parameters further influence the
tuning of the cluster-forming threshold which, in turn, will affect the
sensitivity of the hierarchical method in detecting reliable cortical
thinning. The trade-off seems to be between enhanced detection of
wide diffuse changes and localization of sharp focal changes (Smith
and Nichols, 2009; Hayasaka and Nichols, 2003). As shown in the two
simulations (performed at the whole brain level), no significant
thinning was detected by the HT method in occipital and cingulate
regions because clusters within these regions were extremely small
relative to others located within the remaining regions. However,
these changes in thickness were accurately identified by HT when
region-based analysis was applied. But this choice only represents a
good alternative to the whole brain analysis when the null hypothesis
is false somewhere at each region of interest and therefore avoids an
uncontrolled global number of false positives which may considerably
inflate differences in cortical thickness.

Results from null simulations indicated some correlation between
the sequential test statistics. In this case, FDRregionai iS above the g-value
because the null p-values within selected clusters may actually have a
distribution that is stochastically smaller than the uniform (0,1). The p-
values for the individual locations selected for FDR analysis at the second
stage are not longer marginal ones but rather conditional on being in a
significant cluster (Benjamini and Heller, 2007). Although this issue
requires future research, it is important to note that it does not prevent,
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in practice, a good estimation of the optimal smoothing level oy, as
shown in the simulation analysis, which is not feasible with other
inference methods. Importantly, the increase in the vertex-wise Type 1
error is limited to clusters whose FWE is strongly controlled by our
method. This procedure avoids isolated false positive vertices in random
regions (as in simple vertex-wise FDR analysis). In addition, HT has
demonstrated to have higher power than conventional FDR on the
unsmoothed map (even applying kernels as small as 5 mm) when the
signal-to-noise ratio in the SPM is low (see Fig. 5).

The HT methodology is only applicable for signals whose spatial
pattern consists of compact clusters in the statistical map. For
example, it does not seem applicable to neither fMRI nor PET mainly
because, as stated by Chumbley and Friston (2009), the statistical
signal provided by these recording techniques is continuous (it
extends over the whole brain) and all voxels are indeed non-null. In
these cases, FDR is zero and it does not make sense to talk about active
or inactive voxels. This is the reason why topological features (clusters
and peaks) are tested with RFT or PT methods instead.

The pattern of cortical thinning in AD has been extensively
described by using different computational neuroanatomy techniques
(e.g., Frisoni et al., 2007; Lerch et al., 2005; Thompson et al., 2003;
Baron et al., 2001). Some regions appear systematically damaged in
AD patients in most of the cortical thickness studies (e.g., medial
temporal structures, posterior cingulate gyrus, precuneus, and
temporoparietal association cortex). On the contrary, some regions
of change differ from one study to another (e.g., occipital lobe, and
orbitofrontal cortex). The extent of cortical thinning and the severity
of atrophy also seem to be highly variable across studies. The present
study suggests that both the level of spatial smoothing and the
statistical inference method used in each study might account for
these apparently contradictory results. Thus, our findings revealed the
artificial extent of cortical thinning pattern in AD patients yielded by
FDR and by cluster- and vertex-based inference tests after applying a
commonly used Gaussian kernel width of 20 mm when compared to
the hierarchical method at the optimal wavelet parameters (see
Fig. 4). These results suggest that cortical atrophy patterns reported in
AD patients might be partially inflated by excessive smoothing and by
the failure of inference methods to control the proportion of false
discoveries. Further research is needed to confirm this hypothesis
with different AD datasets and different computational neuroanatomy
techniques to obtain cortical thickness measurements.
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